The quantum group $T_{h} G L(n)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L911
(http://iopscience.iop.org/0305-4470/25/15/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:49

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The quantum group $\mathrm{T}_{\mathrm{h}} \mathbf{G L}(\boldsymbol{n})$

B A Kupershmidt
University of Tennessee Space Instiute, Tullahoma, TN 37388, USA

Received 6 May 1992

Abstract

Let G be a Lie group and G_{q} be its quantum analogue. In general, it is not known how to construct a quantum analogue of the Lie group TG, the tangent bundle of G. For the case $G=G L(n)$, the quantum group $\mathrm{T}_{h} \mathrm{GL}(n), h=\ln q$, is described below.

Let G be a Lie group and G_{q} be its quantum analogue (Drinfel'd 1986). Let TG denote the tangent bundle of G; it is a Lie group with the multiplication

$$
\begin{equation*}
\binom{g_{1}}{v_{1}}\binom{g_{2}}{v_{2}}=\binom{g_{1} g_{2}}{L_{g_{1}}\left(v_{2}\right)+R_{g_{2}}\left(v_{1}\right)} \quad g_{i} \in G \quad v_{i} \in \mathrm{~T}_{g_{i}} G \tag{1}
\end{equation*}
$$

where L_{k} and R_{g} stand for the left and right translations by $g \in G$, respectively. Given G_{q}, how to derive a quantum group version of TG? It is not known, although one may expect that the answer amounts to some simple operation on R-matrices. This expectation is based on what happens in the quasiclassical limit of quantum group structures, i.e. multiplicative Poisson brackets (PB) on Lie groups. Recall that a PB on G is called multiplicative (equivalently, G is called a Poisson-Lie group) if the multiplication map

$$
\begin{equation*}
\mu: G \times G \rightarrow G \tag{2}
\end{equation*}
$$

is a Poisson map, with the Poisson structure on $G \times G$ being that of the direct product. Now, if \mathbf{P} is a Poisson manifold then TP can also be made into a Poisson manifold (Kupershmidt 1986), with the PB $\{,\}_{T P}$ on TP being defined by the formulae

$$
\begin{align*}
& \left\{F_{1}, F_{2}\right\}_{\mathrm{TP}}=0 \quad\left\{F_{1}, d\left(F_{2}\right)\right\}_{\mathrm{TP}}=\left\{F_{1}, F_{2}\right\}_{\mathrm{P}} \\
& \left\{d\left(F_{1}\right), d\left(F_{2}\right)\right\}_{\mathrm{TP}}=d\left(\left\{F_{1}, F_{2}\right\}_{\mathrm{P}}\right) \quad \forall F_{1}, F_{2} \in C^{\infty}(\mathrm{P}) . \tag{3}
\end{align*}
$$

Moreover, since formulae (3) are natural, i.e. compatible with Poisson maps, it follows that when P is a Lie group G and the $P B\{,\}_{G}$ is multiplicative then so is $\{,\}_{\mathrm{TG}}$.

For the case $\mathrm{G}=\mathrm{GL}(n)$, the quasiclassical formulae (3) can be quantized. This is how.

Recall the commutation relations for a quantum matrix $m \in \operatorname{GL}_{q}(n)$ (Drinfel'd 1986). In the notation of (Kupershmidt 1990), let $\Lambda=(\lambda(i, j))$ be a skewsymmetric matrix, and let $A_{4}^{n \mid 0}$ and $A_{q}^{0 \mid n}$ be the polynomial rings on two quantum n-dimensional spaces given by the generators and relations (Manin 1988)

$$
\begin{align*}
& x_{i} x_{j}-q^{\lambda(i, j)} x_{j} x_{i}=0: A_{q}^{n \mid 0} \tag{4.1}\\
& \xi_{i} \xi_{j}+q^{\lambda(j, i)} \xi_{j} \xi_{i}=0: A_{q}^{0 \mid n} \quad 1 \leqslant i, j \leqslant n . \tag{4.2}
\end{align*}
$$

Demanding that the components of the vectors

$$
\begin{equation*}
x^{\prime}=m \boldsymbol{x} \quad \boldsymbol{\xi}^{\prime}=\boldsymbol{m} \boldsymbol{\xi} \tag{5}
\end{equation*}
$$

again satisfy the commutation relations (4), one arrives at the commutation relations for m :

$$
\begin{align*}
m_{i \alpha} m_{j \beta}\left[q^{\lambda(\alpha, \beta)}\right. & \left.+q^{\lambda(\beta, \alpha)}\right] \\
& =m_{j \beta} m_{i \alpha}\left[q^{\lambda(i, j)}+q^{\lambda(j, i)}\right]+m_{j \alpha} m_{i \beta}\left[q^{\lambda(i, j)+\lambda(\alpha, \beta)}-q^{\lambda(j, i)+\lambda(\beta, \alpha)}\right] \tag{6}
\end{align*}
$$

In the quasiclassical limit $q=\mathrm{e}^{h}=1+h+\mathrm{O}\left(h^{2}\right)$, formulae (4), (6) become the PB formulae

$$
\begin{align*}
& \left\{x_{i}, x_{j}\right\}=\lambda(i, j) x_{i} x_{j} \\
& \left\{\xi_{i}, \xi_{j}\right\}=\lambda(j, i) \xi_{i} \xi_{j} \tag{4.2'}\\
& \left\{m_{i \alpha}, m_{j \beta}\right\}=[\lambda(i, j)+\lambda(\alpha, \beta)] m_{i \beta} m_{j \alpha} .
\end{align*}
$$

The standard choice

$$
\begin{equation*}
\lambda(i, j)=\text { constant } \times \operatorname{sgn}(i-j) \tag{7}
\end{equation*}
$$

results if one requires the $\mathrm{PB}\left(6^{\prime}\right)$ to satisfy the Jacobi identities.
We assume that the Manin receipe (5) produces also the desired quantization of $\operatorname{TGL}(n)$. Thus, we need first to find $\mathrm{T} A_{q}^{n \mid 0}$ and $\mathrm{T} A_{q}^{0 \mid n}$. To do that we apply the T-operation (3) to formulae $\left(4^{\prime}\right),\left(6^{\prime}\right)$, resulting in

$$
\begin{align*}
& \left\{x_{i}, x_{j}\right\}=0,\left\{x_{i}, y_{j}\right\}=\lambda(i, j) x_{i} x_{j} \quad\left\{y_{i}, y_{j}\right\}=\lambda(i, j)\left(x_{i} y_{j}+y_{i} x_{j}\right) \tag{8.1}\\
& \left\{\xi_{i}, \xi_{j}\right\}=0,\left\{\xi_{i}, \eta_{j}\right\}=\lambda(j, i) \xi_{i} \xi_{j} \tag{8.2}\\
& \left\{m_{i \alpha}, m_{j \beta}\right\}=0 \quad\left\{\eta_{i}, \eta_{j}\right\}=\lambda(j, i)\left(\xi_{i} \eta_{j}+\eta_{i} \xi_{j}\right) \tag{9}\\
& \left\{m_{i \alpha}, M_{j \beta}\right\}=[\lambda(i, j)+\lambda(\alpha, \beta)] m_{i \beta} m_{j \alpha} \\
& \left\{M_{i \alpha}, M_{j \beta}\right\}=[\lambda(i, j)+\lambda(\alpha, \beta)]\left(m_{i \beta} M_{j \alpha}+M_{i \beta} m_{j \alpha}\right) .
\end{align*}
$$

As a quantum analogue of formulae (8) we set

$$
\begin{align*}
& {\left[x_{i}, x_{j}\right]=0 \quad\left[x_{i}, y_{j}\right]=h \lambda(i, j) x_{i} x_{j}} \tag{10.1}\\
& {\left[y_{i}, y_{j}\right]=h \lambda(i, j)\left(x_{i} y_{j}+x_{j} y_{i}+E h x_{i} x_{j}\right)} \\
& \xi_{i} \xi_{j}+\xi_{j} \xi_{i}=0 \quad \xi_{i} \eta_{j}+\eta_{j} \xi_{i}=h \lambda(j, i) \xi_{i} \xi_{j} \tag{10.2}\\
& \eta_{i} \eta_{j}+\eta_{j} \eta_{i}=h \lambda(j, i)\left(\xi_{i} \eta_{j}-\xi_{j} \eta_{i}+E h \xi_{i} \xi_{j}\right)
\end{align*}
$$

where $h=\ln q$, and E is an arbitrary constant (or a function of h). Formulae (5) become

$$
\begin{equation*}
\binom{x^{\prime}}{y^{\prime}}=\binom{m x}{M x+m y} \quad\binom{\xi^{\prime}}{\eta^{\prime}}=\binom{m \xi}{M \xi+m \boldsymbol{\eta}} . \tag{11}
\end{equation*}
$$

Thus, we use the matrix representation

$$
(m, M) \rightarrow\left(\begin{array}{cc}
m & 0 \tag{12}\\
M & m
\end{array}\right)
$$

of TGL(n) in $\mathrm{GL}(2 n)$. This implies that if the relations (10) were not right, the resulting overdetermined system of relations on m, M would have no solutions. As it is,
demanding that the components of the vectors $\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}, \boldsymbol{\xi}^{\prime}, \boldsymbol{\eta}^{\prime}$ (11) satisfy again the relations (10), one obtains the following formulae

$$
\begin{align*}
& {\left[m_{i \alpha}, m_{j \beta}\right]=0 \quad\left[m_{i \alpha}, M_{j \beta}\right]=h[\lambda(i, j)+\lambda(\alpha, \beta)] m_{j \alpha} m_{i \beta}} \tag{13}\\
& {\left[M_{i \alpha}, M_{j \beta}\right]=h[\lambda(i, j)+\lambda(\alpha, \beta)]\left(m_{i \beta} M_{j \alpha}+m_{j \alpha} M_{i \beta}+E h m_{i \beta} m_{j \alpha}\right) .}
\end{align*}
$$

Obviously, in the quasiclassical limit $h \rightarrow 0$, formulae (13) become formulae (9).
Formulae (13) describe the desired quantum group $\mathrm{T}_{h} \mathrm{GL}(n)$. By construction, as in the case of Manin's interpretation of $\mathrm{GL}_{q}(n)$, formulae (13) are multiplicative. Also, it is not difficult to show that $\operatorname{det}(m)$ is a central element. Finally, using the diamond lemma (Bergman 1978), one can show that the condition (7) $\lambda(i, j)=$ constant $\times \operatorname{sgn}(i-j)$ is necessary and sufficient for the pBw property to hold for $\mathrm{T}_{h} \mathrm{GL}(n)$, with arbitrary E.

I conclude with a few remarks.
(A) In addition to $\operatorname{det}(m)$, the element

$$
\begin{equation*}
T \operatorname{det}(m)=\sum \frac{\partial \operatorname{det}(m)}{\partial m_{i \alpha}} M_{i \alpha}=\sum M_{i \alpha} \frac{\partial \operatorname{det}(m)}{\partial m_{i \alpha}} \tag{14}
\end{equation*}
$$

is also central. It is likely that $\operatorname{det}(m)$ and $\mathrm{T} \operatorname{det}(m)$ are the generators of the polynomial centre of $\mathrm{T}_{h} \mathrm{GL}(n)$.
(B) The manifold $T P$ is the fibre over R of the 1-jet bundle $\pi^{1}: J^{1} \pi \rightarrow \mathbf{R}$, of the bundle $\pi: P \times \mathbf{R} \rightarrow \mathbf{R}$. When P is a Poisson manifold, the fibres of all the jet bundles $\pi^{k}: J^{k} \pi \rightarrow \mathbf{R}$ are also naturally Poisson. When $\mathrm{P}=\mathrm{G}=\mathrm{GL}(n)$, it is natural to expect that the higher prolongations $\mathrm{G}^{(k)}$ of G can be quantized for all k, and not only for $k=1$.
(C) If \mathscr{G} is a Lie algebra of the Lie group G and $r: \mathscr{G}^{*} \rightarrow \mathscr{\mathscr { G }}$, is an invertible operator then (Drinfel'd 1985) r is a classical r-matrix iff the bilinear form $(\cdot, \cdot \cdot)=\left[r^{-1}(\cdot)\right](\cdot \cdot)$ is a two-cocycle on \mathscr{G}. Applying the first prolongation T to \mathscr{G} we obtain (Kupershmidt 1986) the semidirect sum Lie algebra (of the Lie group TG) $\mathscr{G}^{(1)}=\mathscr{G} \times \mathscr{G}^{a b}$ with the two-cocycle that corresponds to the r-matrix

$$
\mathrm{T} r=r^{(1)}=\left(\begin{array}{ll}
0 & r \\
r & 0
\end{array}\right) .
$$

Here $\mathscr{G}^{a b}$ is the vector space of \mathscr{G} on which \mathscr{G} acts by the adjoint representation. This suggests that the full quantum R-matrix $T R=R^{(1)}$ on $U \mathscr{G} \times U \mathscr{G}^{\text {ab }}$ (or TG) is given by the formula

$$
R^{(1)}=\left(\begin{array}{cc}
0 & R \\
R & 0
\end{array}\right)
$$

But this would be in contradiction to the appearance of E in formulae (13).
(D) From formula (12),

$$
\begin{equation*}
(m, M)^{-1}=(\bar{m}, \bar{M})=\left(m^{-1},-m^{-1} M m^{-1}\right) \tag{15}
\end{equation*}
$$

One can show that the matrix elements of \bar{m} and \bar{M} satisfy the commutation relations (13) with the parameters $\bar{h}=-h, \tilde{E}=-E$. In the quasiclassical limit (9), the map (15) is, as expected, anti-Poisson.

References

Bergman G 1978 Adv. Math. 29 178-218
Drinfel'd V G 1985 Sov. Math. Dokl. 32 254-8
—— 1986 Proc. ICM (Berkely) pp 798-820
Kupershmidt B A 1986 Phys. Lett. 114A 231-5

- 1990 Hamiltonian Systems, Transformation Groups and Spectral Transform Methods ed J Harnad and J E Marsden (Montreal: Les Publications CRM) pp 177-88
Manin Yu I 1988 Quantum Groups and Noncommutative Geometry (Montreal: University of Montreal Press)

